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ABSTRACT

Context. The future ESA Formation Flying mission Proba-3 will fly the solar coronagraph ASPIICS which couples a Lyot coronagraph
of 50mm and an external occulter of 1.42m diameter set 144m before.
Aims. We perform a numerical study on the theoretical performance of the hybrid coronagraph such ASPIICS. In this system, an
internal occulter is set on the image of the external occulter instead of a Lyot mask on the solar image. First, we determine the
rejection due to the external occulter alone. Second, the effects of sizing the internal occulter and the Lyot stop are analyzed. This
work also applies to the classical Lyot coronagraph alone and the external solar coronagraph.
Methods. The numerical computation uses the parameters of ASPIICS. First we take the approach of Aime, C. 2013, A&A 558,
A138, to express the wave front from Fresnel diffraction at the entrance aperture of the Lyot coronagraph. From there, each wave
front coming from a given point of the Sun is propagated through the Lyot coronagraph in three steps, from the aperture to the image
of the external occulter, where the internal occulter is set, from this plane to the image of the entrance aperture, where the Lyot stop is
set, and from there to the final observing plane. Making use of the axis-symmetry, wave fronts originating from one radius of the Sun
are computed and the intensities circularly averaged.
Results. As expected, the image of the external occulter appears as a bright circle, which locally exceeds the brightness of the Sun
observed without external occulter. However, residual sunlight is below 10−8B� outside 1.5R�. The Lyot coronagraph effectively
complements the external occultation. At the expense of a small reduction in flux and resolution, reducing the Lyot stop allows a clear
gain in rejection. Oversizing the internal occulter produces a similar effect but tends to exclude observations very close to the limb.
We provide a graph that allows simply estimating the performance as a function of sizes of the internal occulter and Lyot stop.
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1. Introduction

The active study of the solar corona governs our knowledge
about space weather and stellar atmosphere. Observations in
white light requires long observation time in perfect eclipse con-
ditions, because the solar corona is much fainter than the so-
lar disc itself in this spectral band, typically from 10−6B� to
10−10B� depending on the observed coronal region, where B�
is the mean solar brightness (Allen 2005). A very low level of
stray light must be achieved, following the requirements about
resolution and signal to noise ratio (SNR), and impacting there-
fore the whole design of the coronagraphic instrument. By cre-
ating artificial eclipses, the first Lyot solar coronagraph was a
breakthrough for the study of the solar corona (Lyot 1939;
Dollfus 1983). Unfortunately, ground-based coronagraphy en-
counters many limitations such as the significant disturbance
from Earth’s atmosphere and internal turbulence. The develop-
ment of the external occultation technique (Evans 1948) coupled
with advanced stray light rejection concepts, such as toothed or
multiple discs (Newkirk & Bohlin 1965; Purcell & Koomen
1962), and the advent of space-borne coronagraphy enabled to
overcome these limitations. As a result, the performance of so-
lar coronagraphs has been considerably improved until 1980s,
as described in the review paper by Koutchmy (1988). The

successful Solar and Heliospheric Observatory mission includ-
ing the solar coronagraphs LASCO (Large Angle Spectroscopic
Coronagraph) (Brueckner et al. 1995) can be held as a repre-
sentative and successful example, as it managed to observe the
solar corona from 2R�, where R� is the angular radius of the
Sun, by rejecting scattered sunlight at a level of 10−10B�. How-
ever, the detection of fine scale phenomena, as well as sporadic
events like Coronal Mass Ejections, asks for even more precise
measurements of the radiance at very high angular resolution.
Typically, observing the very limb-close solar corona, i.e. be-
low 1.2R�, where instrumentally scattered sunlight usually pre-
domines, has never been successful without lunar eclipse.

The development of formation flying space mission shall
pave the way for new advanced concept of space instrumentation
by virtually extending the instrument to unprecedented size, es-
pecially for coronagraphy. The solar coronagraph ASPIICS (As-
sociation de Satellites Pour l’Imagerie et l’Interférométrie de la
Couronne Solaire) described by Lamy et al. (2010) and Renotte
et al. (2015) takes advantage of the future ESA Formation Fly-
ing mission Proba-3. As primary payload, this giant externally
occulted coronagraph is split between two spacecraft. A 1.42m
diameter occulting disc is mounted on the Occulter Spacecraft
while the telescope is carried by the Coronagraph Spacecraft po-
sitioned 144m behind. The performance thus results from the
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combination of the external occultation of the Sun and the inter-
nal Lyot-style coronagraph, with a totally unprecedented large
geometry never reached before. The details of the optical design
are can be found in Galy (2015). The scientific objectives of AS-
PIICS are mainly to observe fine scale structure and phenomena
very close to the solar limb, from 1.08R� to 3R�, as never has
been done, with a spatial resolution of 5.6arcsec. It demands to
reject stray light below 10−6 − 10−7B�, which is the level of the
coronal brightness at 1.08R� (Allen 2005).

As already mentioned, instrumentally scattered light repre-
sents one of the main limitation to spaceborne observations. In
particular for the solar coronagraphy, the performance is mostly
driven by the diffraction of direct sunlight by any occulting
masks and any field stops. The fine analysis of this stray light
remains very complex and sensitive work, which demands di-
dacated study of extended light source such the Sun. As of
now, stray light rejection of past solar coronagraphs has classi-
cally been estimated by experimental approaches, like the works
described in Fort et al. (1978), Bout et al. (2000), Venêt
et al. (2010) and Landini et al. (2010). In contrast, exten-
sive numerical analysis appears nowadays mandatory, or at least
complementary, for modern advanced instruments. In this arti-
cle, we present a dedicated analytic study on the performance
of (giant) coronagraphic systems, whose size parameters are
those of ASPIICS. As closely related work, an article by Aime
(2013) presents the first theoretical performance of sharp-edged
or apodized external occulters for solar coronagraphy. We build
upon this analysis to present a complete model for the propaga-
tion of the wave fronts, and to compute the global response of
the externally occulted hybrid Lyot coronagraph such ASPIICS,
that we compare to the original Lyot coronagraph and the exter-
nal solar coronagraph. We also investigate the impact of oversiz-
ing the Lyot mask and the impact of reducing the Lyot stop on
stray light rejection.

The article is organized as follows. The model and the frame
of work adopted for this work are given in Section 2. The mathe-
matical wave propagation into the Lyot-style coronagraph is de-
rived in Section 3, standing as a totally new computation. The
comparison of the response of the different coronagraphic sys-
tems and further analysis on sizing both internal occulter and
Lyot stop are discussed in Section 4. Conclusions are given in
Section 5.

2. Model of the coronagraph

2.1. Presentation of the model

The original Lyot coronagraph is made of four remarkable planes
representing the instrument. In previous theoretical study of this
system by Aime (2002), these planes are denoted as A (entrance
aperture), B (focal plane), C (image of the entrance aperture)
and D (final focal plane). By adding an external occulter, two
additional planes must be introduced. On one hand, the exter-
nal occulter is positioned in plane O at finite distance before the
entrance aperture of the telescope. On the other hand, plane O’
denotes the image of the external occulter made by telescope. It
is located further behind the focal plane. The following list re-
calls the names and descriptions of all the planes, also illustrated
in Figure 1.

Plane O External occulter plane, as a sharp-edged perfect disc.
Plane A Aperture of the telescope. We assume that the primary

objective (L1) coincides with the pupil.
Plane B Focal plane of the telescope.

Plane O’ Image plane of the external occulter made by the tele-
scope.

Plane C Image of the entrance aperture. The Lyot stop and the
third objective (L3) are set here.

Plane D Final focal plane of the instrument for detection.

The light encounters these successive planes in order O, A, B,
O’, C and D. In our work, we study three different coronagraphic
systems plus the related reference imaging system:

SØ Raw telescope used as a reference, made of plane A and
plane B.

SL Original Lyot coronagraph including the Lyot mask in plane
B, and the Lyot stop in plane C.

SE External solar coronagraph including the external occulter in
plane O only, and ending at the focal plane B.

SEL Externally occulted hybrid coronagraphic system com-
posed of the external occulter in plane O, the internal occul-
ter and the second objective (L2) in plane O’, and the Lyot
stop in plane C.

We intentionally chose to respect the following naming conven-
tion. The Lyot mask denotes the occulter set in plane B, accord-
ing to the original Lyot coronagraph. The internal occulter de-
notes the second occuting disc set in plane O’ for the hybrid
coronagraphic system S EL, corresponding to the Lyot mask in
this particular case. This article presents and compares the global
response of these four systems, but it will focus on the hybrid
coronagraphic system SEL, as it consists of a totally new com-
putation. The four systems SØ, SL, SE and SEL include the same
circular entrance aperture in plane A. their schematic represen-
tations are given in Figure 1.

Our model is generic. However, the parameters of the nu-
merical experience are those of ASPIICS. The external occult-
ing disc of radius R = 710mm is located at z0 = 144.348m
before the 50mm diameter entrance aperture. The telescope con-
sists of a converging lens of focal length f = 330.385mm. The
Sun is legitimately assumed to be at infinity. Its angular radius is
R� = 0.0046542rad as seen from the centre of the aperture, so
∼ 16.2arcmin. As viewed from the telescope aperture, the exter-
nal occulter already masks up to 1.0568R� at the center of the
pupil - 1.0196R� with 100% vignetting and 1.094R� with 0%
vignetting. Table 1 summarizes the numerical parameters.

The radius of the Lyot mask set in plane B will be given
in solar units R�, since this plane is the conjugate of the solar
disc. However, the internal occulter is set in plane O’ which is
the conjugate image of plane O. We will thus speak in terms of
units of external occulter image. A simple proportional relation-
ship applies here to convert this particular units system to solar
units, or metric units. In plane O’, the image of R corresponds to
1.629mm and to 1.0568R�, as given in Table 1. We emphasize
that using solar unit has no real meaning to plane O’, since it is
not conjugated with the Sun.

2.2. Analytic frame of work

All the planes previously defined are assumed to be perfectly
parallel and aligned with respect to the optical axis, so that the
geometry is axis-symmetric. The impact of a tilt or an off-set
would in itself deserve further analysis but it is left to future
works. To each plane we set a r, θ, z cylindrical coordinate sys-
tem. The z-axis refers to the optical axis, oriented positively to-
wards the detection plane. The corresponding Cartesian coordi-
nate system (x, y, z) is defined by x = r cos θ and y = r sin θ.
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Fig. 1. Schematic representation of the four coronagraphic systems. Top: the original Lyot coronargaph SL made of planes A, B, C and D. The raw
telescope SØ ends at focal plane B, i.e. without Lyot coronagraph. Bottom: the externally occulted hybrid Lyot coronargaph SEL made of planes
O, A, O’, C and D. The external solar coronagraph SE ends at focal plane B. Figures not to scale.

In the remaining of the article, we will sometimes use both co-
ordinates simultaneously, because this slight abuse of notation
allows more compact and readable equations. To provide a bet-
ter understanding, we will use as subscript the letter O, A, B, O’,
C or D referring to the corresponding plane for every quantity.

Our study uses monochromatic light, here λ = 550nm. We
adopt Fresnel regime to describe diffraction induced by the ex-
ternal occulter, as suggested by the large value of Fresnel num-
ber N f = R2/λz0 = 6350 (Born & Wolf 2006). To model the
perfect sharp-edged disc, the transmission in plane O is a radial
gate function τ(r) = 0 if r ≤ R and τ(r) = 1 else. The pupil
of the telescope is a perfect circular entrance aperture of radius
Rp = 25mm.

The analytic propagation of wave front is based on paraxial
Fourier optics formalism (Goodman 2005). Under this assump-
tion, Fresnel free-space propagation of a wave front Ψ0 (x, y)
over a distance z is written as convolution product. The complex
amplitude Ψz (x, y) of the propagated wave front at distance z is

Ψz (x, y) = Ψ0 (x, y) ~
1

iλz
exp

(
iπ

x2 + y2

λz

)
=
ϕz(r)
iλz
× Fλz

[
Ψ0 (x, y) × ϕz(r)

]
(1)

where ϕz(r) = exp(iπr2/λz) and r =
√

x2 + y2 is the transverse
radius in cylindrical coordinates. Fλz denotes the 2D Fourier
transformation with spatial frequencies u = x/λz and v = y/λz.
Eq.(1) is the so-called Fourier-Fresnel transformation of the
function Ψ0 (x, y), where the phase term exp(2iπz/λ) for the lon-
gitudinal propagation has voluntary been omitted. Moreover, in
the Fourier formalism, a converging lens of focal length f is
modeled by the quadratic phase factor ϕ− f (r) = exp(−iπr2/λ f ).
Propagating through a lens consists of multiplying the complex
amplitude of the incoming wave front by ϕ− f (r). A well known
result is the propagation to the focal plane of a lens, i.e. z = f
in Eq.(1). In this case, both quadratic phase factors ϕ− f (r) and
ϕ+ f (r) cancel each other. Consequently, the wave in the focal
plane is directly proportional to the Fourier transformation of
the incoming wave at its entrance, with to a scale factor λ f and
a quadratic term ϕ f (r) that vanishes when computing the related
intensity.

The Sun is modeled by a collection of incoherent point
sources. The global response of any system is given by the in-
coherent sum of their respective elementary intensities. Every
point source is identified by a set of angular coordinates (α, β)
on the sky, with

√
α2 + β2 ≤ R�. To provide a better understand-

ing, we will also use as subscripts the coordinates (α, β) to refer
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Table 1. Parameters used to model the four coronagraphic systems. See
text for details.

Parameter Value
Wavelength λ = 550nm
Angular radius of the Sun R� = 0.0046542rad
Distance to the Sun ∞ (1 Astronomical Unit)
Radius of the external occulter R = 710mm
Distance plane O - plane A z0 = 144.348m
Radius of the pupil Rp = 25mm
Focal length of the telescope f = 330.385mm

Image of R in plane O’ 1.629mm
1.0568R�

to a precise point source for every quantity. As the Sun is at in-
finity, the light coming from every points source is modeled by
tilted planar wave, whose unitary complex amplitude is written
as Ψ�,α,β (x, y) = exp(−2iπ/λ(αx + βy)).

We use the center-to-limb variation of the Sun B(α, β) from
Hamme (1993). This choice has been driven by the need to
have a representative limb darkening function for the wavelength
λ = 550nm. Other functions may be used, but would require new
numerical computations. Still we believe that another function
would only slightly change the results.

B(ρ)=1− 0, 762
(
1−

√
1 − ρ2

)
− 0, 232

(
1−ρ2

)
log

(√
1−ρ2

)
(2)

where ρ =
√
α2 + β2/R� is expressed in solar unit.

2.3. Fresnel diffraction by the external occulter

Fresnel diffraction produced by a sharp-edged disc has already
been fully described by Aime (2013) (his Eq.(5)). The tilted pla-
nar wave front Ψ�,α,β (x, y) coming from the point source at (α, β)
arrives onto the occulting disc in plane O, and then propagates
following the Fourier-Fresnel transformation. Related complex
amplitude ΨA,α,β of the wave front arriving on plane A is thus

ΨA,α,β (x, y) =
[
Ψ�,α,β (x, y) × τ

]
~

1
iλz0

exp
(
iπ

x2 + y2

λz0

)
= Tα,β(x, y) × Γα,β × ΨA,0,0 (x + αz0, y + βz0) (3)

where

Tα,β(x, y) = exp
(
−2iπ

αx + βy
λ

)
(Tilt)

Γα,β = exp
(
−iπ

(α2 + β2)z0

λ

)
(Offset)

ΨA,0,0 (x, y) = 1−
1

iλz0

∫ ∫
η2+ξ2≤R2

exp
(
iπ

(x − ξ)2+(y − η)2

λz0

)
dξdη (4)

with ξ, η the Cartesian variables for integration over the occult-
ing disc. As a result, an off-axis point source produces the same
complex amplitude as the on-axis point source, i.e. ΨA,0,0, but
shifted of the quantity (z0 × α, z0 × β) towards negative (x, y) di-
rections. The constant phase term Γα,β accounts for the offset of
position, and the original tilt Tα,β of the wave is conserved. Let us
now consider the particular case of the on-axis point source. Tak-
ing advantage of the cylindrical symmetry, we naturally change
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Fig. 2. Fresnel diffraction pattern
∣∣∣ΨA,0,0 (r)

∣∣∣2 for unitary on-axis point
source at infinity, for the 710mm radius disc at z0 = 144.348m. (a) Full
range, in logarithmic scale. (b) Zoom in Arago bright spot at the cen-
tral region [0, 500µm], in linear scale. (c) The transition region between
shadow and light around 710mm, in linear scale.

for polar coordinates (r, θ). Eq.(4) is then written as a radial Han-
kel transformation, as given in Eq.(11) of Aime (2013):

ΨA,0,0 (r) = 1 −
ϕz0 (r)
iλz0

∫ R

0
2πρ exp

(
iπ
ρ2

λz0

)
J0

(
2π

rρ
λz0

)
dρ (5)

where ρ is the radial variable for integration over the disc, r is the
transverse radial coordinate on plane A, ϕz0 (r) = exp(iπr2/λz0)
and J0(r) is the Bessel function of the first kind. Eq.(5) is the
exact analytic expression of Fresnel diffraction in the particular
case of the on-axis point source. From a numerical point of
view, this integral requires huge computation time because
the numerical step-size dρ must be of the order of λ to be
consistent. An analytic expression using Lommel series can
alternatively be used, as proved by Aime (2013), and the
interest reader is referred to this work. Figure 2 (curve (a))
illustrates Fresnel diffraction pattern |ΨA,0,0 (r)|2, known as
the bright spot of Arago, for the 710mm diameter disc at the
distance z0 = 144.348m, in a logarithmic scale. A very high
spatial sampling of 0.1µm in plane A has been used. Figure 2
also shows the central spot in linear scale (curve (b)), whose
peak amplitude is 1 for r = 0 as expected, and the transition zone
between shadow and light (curve (c)). Note that the amplitude
decreases below 10−4 for larger values of r.
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3. Propagation through the coronagraph

The propagation of every incoming wave front through each suc-
cessive planes of the coronagraph is a coherent process. How-
ever, the observed response is the result of an incoherent summa-
tion of elementary intensities, meaning that every point source
composing the Sun can be treated individually. So, let us con-
sider one point source located at (α, β) in the sky. We analytically
write this coherent process of wave propagation, accordingly
with each system SØ, SL, SE or SEL. The complex amplitude
of the wave fronts ΨB, ΨO′ , ΨC and finally ΨD are successively
computed, by starting from ΨA,α,β, which will be denoted as ΨA
for better readability. From here, the polar coordinates (r, θ) are
preferred to the Cartesian coordinates (x, y).

3.1. Classic Lyot coronagraph

As already described, the original Lyot coronagraph SL is mod-
eled by planes A, B, C and D (Aime 2002), and does not in-
clude the external occulter. The incoming wave front ΨA at the
entrance aperture simply consists of the tilted planar wave front.
Here, the coronagraph acts as a mere imaging system, adding the
Lyot mask in plane B, i.e. the focal plane. Using the approach of
Fourier formalism described in Sec.2.2, the propagation process
through the whole instrument consists of scaled Fourier transfor-
mations between each of the successive planes, i.e. from A to B,
from B to C and from C to D. The images are of different sizes,
depending on the lenses used for imaging, but these differences
in size do not affect the result. In terms of Fourier analysis, the
Lyot mask in B behaves as a high pass filter and the Lyot stop
in C behaves as a low pass filter. It is the conjugate effect of
these two masks that makes the Lyot coronagraph efficient for
the rejection of the direct sunlight where we want to observe the
corona.

We name P(r),M(r) and L(r) the radial transmission func-
tions of the entrance pupil in A, the Lyot mask in B and the Lyot
stop in C respectively. The wave front ΨB is computed from the
Fourier-Fresnel transformation, as given in Eq.(1)

ΨB(r, θ) =
ϕ f (r)
iλ f

× Ψ̃B(r, θ) (6)

where Ψ̃B(r, θ) = Fλ f [ΨA(r, θ) × P(r)]. We remind that the
quadratic phase term ϕ f (r) vanishes when computing related in-
tensity. The wave front in plane B encounters the Lyot mask
M(r) and the second objective L2 of focal f2. Plane C is the
image plane of the entrance aperture that is located at a distance
d = f × f2/( f − f2) from plane B, as given by the relation of con-
jugation for lens. Writing again a Fourier-Fresnel transformation
of ΨB over the distance d, the three quadratic phase factors ϕ f (r),
ϕ− f2 (r) and ϕd(r) cancel each other.

ΨC(r, θ) =
ϕd(r)
iλd

× Fλd

[
ΨB(r, θ) ×M(r) × ϕ− f2 (r) × ϕd(r)

]
=
−ϕd(r)
λ2 f d

× Ψ̃C(r, θ) (7)

where Ψ̃C(r, θ) = Fλd

[
Ψ̃B(r, θ) ×M(r)

]
. Again, the intensity in

plane C is simply proportional to the Fourier transformation of
Ψ̃B (r, θ) ×M(r) (Aime 2002). Based on the same principle, the
wave front in plane D is then obtained by performing a Fourier
transformation of Ψ̃C(r, θ)×L(r), corresponding to the image on
the focal plane of the whole imaging system.

ΨD(r, θ) =
ϕ f (r)
iλ f

× Fλ f

[
Ψ̃C(r, θ) × L(r)

]
(8)

In a similar way, the wave propagation for the reference tele-
scope SØ is limited to the first propagation to plane B, i.e. Eq.(6).
We also used this analytic formulation for the external solar
coronagraph SE by considering Fresnel diffraction for the com-
plex amplitude ΨA at the entrance aperture, expressed by Eq.(3).

3.2. Externally occulted coronagraphic system

Let us now consider the externally occulted hybrid Lyot corona-
graph SEL. This system varies from the classic Lyot coronagraph
SL, since it includes the internal occulter set in plane O’. Plane
B has no more actual interest in this particular case and shall be
skipped. Moreover, ΨA consists now of Fresnel diffracted wave
front as given in Eq.(3), because of the external occulter in plane
O. We directly write the Fourier-Fresnel propagation over the
distance z1 = z0 f /(z0 − f ) between planes A and O’. The wave
front ΨO′ in plane O’ is then expressed as

ΨO′ (r, θ) =
ϕz1 (r)
iλz1

× Fλz1

[
ΨA(r, θ) × P(r) × ϕ− f (r) × ϕz1 (r)

]
ΨO′ (r, θ) =

ϕz1 (r)
iλz1

× Ψ̃O′ (r, θ) (9)

where Ψ̃O′ (r, θ) = Fλz1

[
ΨA(r, θ) × P(r) × ϕ−z0 (r)

]
. The main dif-

ference between Ψ̃B and Ψ̃O′ , in Eq.(6) and Eq.(9) respectively,
is the quadratic phase factor ϕ−z0 (r) = exp(−iπr2/λz0). It can be
seen as a virtual converging lens of focal length z0 which rejects
the external occulter at infinity. Consequently, the following im-
age of plane O made by the primary objective is now moved
into the focal plane, and so it is computed as a simple Fourier
transformation, as previously. This reasoning makes the compu-
tations much simpler than considering the wave in plane B and
propagating it to O’ with a Fresnel propagation over the distance
f 2/(z0 − f ).

Then, the wave front in plane O’ encounters the internal oc-
culter M(r) and the second objective L2. We can thus directly
apply Eq.(7) to derive the complex amplitude of the wave front in
plane C, where the distance d refers now to d = z1 × f2/(z1 − f2).
However, the quadratic phase factor ϕ−z0 (r) remains. Since we
want to obtain in plane C the image of the pupil, we have to get
rid of this unwanted factor. This is simply obtained by multiply-
ing the complex amplitude in plane C by ϕ+z0 (r), which corre-
sponds to a diverging lens of focal z0 that compensates the first
virtual converging lens.

ΨC(r, θ) =
−ϕd(r)
λ2z1d

× Ψ̃C(r, θ) × ϕ+z0 (r) (10)

where Ψ̃C(r, θ) = Fλd2

[
Ψ̃O′ (r, θ) ×M(r)

]
. Finally, the wave front

in plane D is given by Eq.(8). To summarize, adding a virtual
converging lens of focal length z0 in plane A and a diverging
lens of the same focal length in plane C makes the numerical
computation much more convenient and handy.

3.3. Observed intensities

The total intensity Ii on plane i = {A, B,O′,C,D} is the incoher-
ent sum of the elementary intensities due to every points source
describing the whole solar disc. From this section, the complex
amplitude Ψi,α,β (r, θ) will be written as a function of four vari-
ables Ψi(α, β, r, θ), to clarify the integration process. Taking into
account the center-to-limb darkening function B(α, β), the inte-
grated intensity due to the full Sun is

Ii(r, θ) =

∫∫
B(α, β) × |Ψi(α, β, r, θ)|2 dαdβ (11)
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where i = {A, B,O′,C,D}. This Fredholm integral of the
first kind cannot be computed as a mere convolution since
Ψi(α, β, r, θ) is not shift invariant with respect to (α, β), and a
2D numerical summation must be performed. But we can ac-
tually take advantage of the axis-symmetry of the system. We
remind that it assumes that the Sun and every remarkable planes
are parallel and aligned to the optical axis. We now replace so-
lar angular coordinates (α, β) by (ρ, θs), with α = ρ cos θs and
β = ρ sin θs, meaning having ρ ∈ [0,R�] and θs ∈ [0, 2π[. The
assumed symmetry makes the 2D image of one point source
|Ψi(ρ, θs, r, θ)|2 in plane i rotate identically with respect to the
point source on the solar disc, i.e. θs. In other words, it only de-
pends on the relative angular difference φ = θ − θs. As a result,
integrating over the solar polar angle θs is equivalent to circularly
integrating on the 2D image plane, so over θ. Moreover, the solar
brightness is a radial function, so B(α, β) = B(ρ). By substitut-
ing θ by φ, the integrated intensity given in Eq.(11) becomes the
following radial function

Ii(r) =

∫ 2π

0

[∫ R�

0
B(ρ) × |Ψi(α, β, r, φ + θs) |2 ρdρ

]
dφ (12)

From a numerical point of view, it is much more convenient to
compute this last integral than the rough full two dimension in-
tegration. In Eq.(12), θs can arbitrary be fixed to 0, since the
integration is performed over 2π. So we choose α = ρ and
β = 0. This means that we only need to propagate the wave
fronts coming from one elementary radius of the Sun. To sum-
marize, we first compute Fresnel diffraction ΨA,0,0 related to the
on-axis point source (Eq.(5)). Second, we derive ΨA(ρ, 0, r, φ) as
given in Eq.(3)

ΨA(ρ, 0, r, φ) = Tρ,0(r, φ) × Γρ,0 × ΨA,0,0

(
req

)
(13)

where req =

√
(r cos φ + ρz0)2 + (r sin φ)2. Third, we propagate

the wave front to compute Ψi(ρ, 0, r, φ). Finally, we perform the
integration in Eq.(12) as a weighted sum of two dimension im-
ages, followed by a circular average of the result.

4. Analysis and discussion

4.1. Numerical implementation

We now present the results of the complete computation of the
observed intensities Ii(r) on each plane i ∈ {A, B,O′,C,D}, ac-
cordingly for each configuration SØ, SL, SE and SEL. The com-
plex amplitude ΨA of the wave front in plane A has been com-
puted in Mathematica (Wolfram 2012). The numerical integra-
tion of the Hankel transformation (Eq.(4)) remains a delicate op-
eration, as described by Lemoine (1994). Then, the wave fornt
is linearly interpolated and the propagation is performed using
Matlab 2D Fast Fourier transformation combined with the re-
centering routine fftshift when necessary. We will provide
the reader a complete Matlab/Octave toolbox that will be able
to reproduce the following computations for the sake of repro-
ducible research.

A difficult and sensitive parameter in the numerical exper-
iments is the choice of the sampling in each plane. Indeed, as
discussed in Soummer (2007), in successive planes, i.e. A to B
or A to O’, B to C or O’ to C and C to D, the sampling require-
ments are opposite. This problem is known as the two-fold sam-
pling requirement. The point of view which has been adopted in
the present work is somewhat empirical. We imposed the same
number of points in the occulter image in plane O’ and in the

telescope aperture in plane A. Note that this a priori is sensi-
ble since it provide a similar resolution in all planes, but other
sampling strategies might be of interest. The telescope aperture
is padded inside an array of N × N points, and np < N points
are used in the radius Rp of the aperture. The spatial sampling
in plane A is thus sA = Rp/n, for a total field FA = N × Rp/n.
Due to the properties of Fourier spatial frequencies, the field FA
in plane A produces a sampling sO′ = λd/FA in plane O’, where
d = z0 f /(z0 − f ) is the distance between plane A and plane O’.
Moreover, the size of the image radius of the external occulter is
R × d/z0. Therefore, the number of points ni in the radius of the
occulter image is p = Rd/z0sO′ . By imposing ni = np, we obtain:

ni =

√
R × Rp × N

z0 × λ
∼ 14.9525

√
N (14)

For numerical reasons, N should preferably be a power of 2, and
at least 4096 points are required for a correct sampling of the
image to respect Shannon criteria. Of course, the larger N the
better the result due to zero-padding effect, being a compromise
between computation time and precision.

The results of computation reported in this paper has been
made using a machine with two 14 core Intel Xeon processors
and 512GB of RAM, using N = 213 = 8192 and np = 1353,
meaning that the sampling in plane A is about 18.5µm and the
field of about 15.6cm. Each step in the numerical computation
has been verified in particular with point sources. We used a Lyot
mask or internal occulter of 1.065R� radius and a Lyot stop of
24.75mm radius to illustrate the numerical experience, and this
should not skew the global results.

4.2. Impulse response in the Lyot coronagraph

We investigate the impulse response of a wave front originating
from one point source alone in both plane B and O’, including
the external occulter set 144.348m before. We first analyzed the
case of the on-axis point source. The image produced is a bright
perfect circle which fits the image of the external occulter edge.
The intensity is very focused in plane O’ as expected, illustrated
in Figure 3. In this case, the response is perfectly symmetric. We
secondly analyzed an off-axis point source at α = 768arcsec,
i.e. 0.8R�. Figure 4 shows the two dimension intensities in both
plane B and O’. A first interesting result consists of the shift of
the image of the Arago spot. Indeed, strongly asymmetric light
structures appear, while the on-axis case was perfectly symmet-
ric. The sharpness and the fine scale structure of the diffraction
features, visible in the zoom regions in Figure 4, prove the need
of a very high sampling on both plane B and O’. Finally, observ-
ing the difference between plane B and O’ is a very dominant
point. Here, the light pattern in plane B tends to be spread along
the x-axis, so perpendicularly to the local edge of the image of
the external occulter modeled by the y-axis. The light appears
out-of-focused. In the contrary, plane O’ shows a diffracted light
pattern fitting locally the image of the external occulter.

4.3. Response of the different coronagraphic systems

4.3.1. Intensity in plane A

The performance of the external occulter can first be assessed
by computing the intensity IA(r) at the entrance aperture of the
telescope. Figure 5 plots the penumbra profile of diffracted light
(red curve) and the corresponding geometrical umbra profile
(black dashed curve). The horizontal axis represents the radial
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Fig. 3. Two dimension observed intensity in plane O’ of diffracted wave front originating from the on-axis point source at the center of the Sun, in
logarithmic scale.

coordinate in mm, starting at the center of the umbra cone. The
sharp-edged 710mm radius occulter is 1.0568 larger than the so-
lar stenope image, which corresponds to a geometrical umbra of
R − z0 tan R� = 38mm radius. The full solar irradiance statrs at
a radius of R + z0 tan R� = 1382mm, as expected. Because of
diffraction, the scattered light remains at a level of 10−4B� at the
center of the umbra cone, as a flat plateau. The external occul-
ter reduces direct sunlight by a factor of the order 8000 at the
entrance aperture of the telescope, which is a first significant ad-
vantage for both externally occulted systems SE and SEL. Here,
apodization techniques (Aime 2013) or more complex shapes
of occulter (Bout et al. 2000) may improve the performance.
We give further analysis on the shape of the penumbra and the
shadow cone in Appendix A, for different values of the distance
z0 .

4.3.2. Intensities in plane B

Figure 6 shows the radial intensities IB(r) in plane B in logarith-
mic scale. The radial coordinate has been re-scaled in solar unit,
and it is limited up to 3.2R�. Here, the image of the Sun (blue
curve) is perfectly focused in the focal plane, and is used as a ref-
erence for normalization. It consists of the global response of the
raw telescope SØ. The slight decrease in the range 0 − 1R� cor-
responds to the center-to-limb variation. Sunlight falls abruptly
to 10−3B� at 1R�, then extends as a large tail of residual light
brighter than 10−5B�. This is due to the summation of the Airy
rings at large radius. The diffracted light pattern produced by the
external occulter (red curve) consists of a bell-like curve out-of-
focus, as expected, since the focal plane is not the image plane
with respect to the external occulter. The width of this peak is
function of the size of the entrance aperture, in a same way as
Airy radius. Note that the peak is not symmetric, and reaches
a maximum of 10−3B� around 1.05R�. This last curve modeled
the response of the external solar coronagraph SE .

4.3.3. Intensities in plane O’

Similarly, Figure 7 shows the radial intensities IO′ (r) in plane
O’ in logarithmic scale, using the same scaled axis as Figure 6
for a purpose of comparison. We remind that using solar units

here has no real meaning, since plane O’ is not conjugated with
the Sun as discussed in Section 2.1. The image of the Sun (blue
curve) is very similar to the one in the focal plane, but is slightly
out-of-focus here, being at d − f = 0.758mm ahead. The drop to
10−3B� is consequently smoother. The large tail of residual light
is still present. As for the diffraction pattern (red curve) made by
the external occulter, we obtained a very narrow focused peak
of 10−2B� amplitude, located at the exact angular position of the
edge of the external occulter image, i.e. 1.0568R� or 1.629mm.
Again, this is expected because plane O’ is the image plane of
the external occulter. This residual is thus very troublesome at
that particular location.

As of now, we already get an idea of the relative difference
in the performance of the different coronagraphic systems. In the
original Lyot coronagraph SL, the Lyot mask is set in the focal
plane and blocks the direct focused sunlight (blue curve in Fig-
ure 6). It will thus let a relatively large amount of residual light
propagate further inside the instrument. By adding the external
occulter, as in system SEL, the role of the internal occulter is now
to block the diffracted light fringe (red curve in Figure 7). De-
pending where the mask is set, rejection will be more or less ef-
ficient. For a purpose of comparison, we looked at the integrated
residual light denoted as

L(r) =

∫ 2π

0
dθ

∫ r

r
Ii(r)rdr (15)

where i ∈ B,O′, and with the numerical upper limit r = 3.2R�
already discussed. We analyzed three different cases:

LSL (r) the residual light in plane B for the original Lyot coron-
agraph SL, without the external occulter

LSE (r) the residual light in plane B for the external solar coron-
agraph SE , including the external occulter

LSEL (r) the residual light in plane O’ for the hybrid corona-
graphic system SEL, including the external occulter

We superimposed in Figure 8 the three residual light curves
LSL (r) (black curve), LSE (r) (blue curve) and LSEL (r) (red
curve), which we normalized. By comparing the residual light
from both cases including external occultation, i.e. LSE and LSEL ,
we can mostly justify the location of the internal occulter for the
system SEL. Indeed, it is obvious that the internal occulter, for
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Fig. 4. Two dimension observed intensities of diffracted wave front originating from the off-axis point source at α = 768arcsec, in logarithmic
scale. Top: IB(x, y) in plane B. bottom: IO′ (x, y) in plane O’. Both plots on the right zoom in the interesting feature.
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Fig. 5. Intensity IA(r) on plane A in a logarithmic scale. The intensity is
normalized to the mean solar brightness. Red: radial profile of diffracted
light produced by the external occulter. Black dashed: related purely ge-
ometrical profile. (a) Penumbra profile in full range. (b) Reduced range
[0mm; 100mm] corresponding to the umbra region.

a given size, will filter out much more residual diffracted sun-
light by being set in plane O’ than plane B, because the light is
much more focused. The internal occulter must then correctly be
set in plane O’ when adding the external occulter. At this stage,
we can already foresee that the hybrid coronagraphic system SEL
will provide the best performance, while keeping a constant vi-
gnetting.

4.3.4. Intensities in plane C

Figure 9 presents the radial intensities IC(r) in plane C in loga-
rithmic scale. The transverse radius is given in mm. A 1.065R�
Lyot mask and an internal occulter of equivalent angular size
have been used here, for the systems SL and SEL respectively. We
normalized the intensities using the exact image of the entrance
pupil. The original Lyot coronagraph SL (blue curve) shows a
narrow peak at r = 25mm, being the exact position of the edge
of pupil. This 10−1B� fringe can be interpreted as a diffraction
feature produced by the circular entrance aperture. Similar fea-
ture is observed in the case of hybrid coronagraphic system SEL
(red curve). The diffraction fringe is however much less bright,
reaching about 10−4B�, due to the external occulter beforehand.
The role of the Lyot stop is to crop this diffracted light peak.
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Fig. 6. Observed intensities IB(r) in plane B in a logarithmic scale. The
transverse radius is given in solar units. The intensities are normalized
to the mean solar brightness. Blue: response of the raw telescope SØ.
Red: response of the external coronagraph SE . Vertical line: 1.065R�
radius Lyot mask.

4.3.5. Intensities in plane D

Finally, Figure 10 gives the final response of the four imaging
systems, in logarithmic scale, using the same occulting masks
of 1.065R� in planes B and O’, and a 24.75mm Lyot stop. We
plotted the four observed intensities, meaning IB(r) for the ref-
erence telescope SØ (black curve) and the external coronagraph
SE (green curve), and ID(r) for the classic Lyot coronagraph SL
(blue curve) and for the hybrid coronagraphic system SEL (red
curve). The reference image of the Sun in plane B is used as
a reference for normalization. At the image of the external oc-
culter, both systems SL and SE show a relatively high diffrac-
tion fringe, being 10−3B�, while the hybrid coronagraphic sys-
tem already rejects residual light below 10−5B�. Outside 1.5R�,
the three systems SL, SE and SEL reject below 10−6B�, 10−7B�
and 10−8B� respectively. As for now, this analysis has proved
the efficiency of the combination of an external occulter with a
Lyot coronagraph. While the classic Lyot coronagraph seems to
be the less efficient, the externally occulted hybrid coronagraph
SEL provides the best performance in terms of stray ligth rejec-
tion, with a gain of at least two orders of magnitude.

4.4. Sizing the internal occulter and the Lyot stop

Based on the configuration of the coronagraphic system SEL,
we now investigate the impact of sizing the internal occulter,
keeping the external occultation ratio R/z0 constant. We com-
puted the response in plane D for several sizes of internal oc-
culter set in plane O’. We looked at radii of 1.005, 1.01, 1.02,
1.03 and 1.04 times the external occulter image. They respec-
tively corresponds to radii of 1.637mm (1.0621R�), 1.645mm
(1.0674R�), 1.662mm (1.0779R�), 1.678mm (1.0885R�) and
1.694mm (1.0991R�). We superimposed in Figure 11 the radial
cuts of intensities ID(r), in logarithmic scale, using a Lyot stop of
24.75mm radius (plot on the left) and one of 24mm radius (plot
on the right). The plot is given in the range 0.5−2R� to highlight
the diffraction fringe area.

In a similar way, we analyzed the effect of reducing the Lyot
stop, keeping a fixed internal occulter. We compared in Figure
12 the radial cuts of final intensities ID(r), in logarithmic scale,
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Fig. 7. Observed intensities IO′ (r) in plane O’ in a logarithmic scale. The
transverse radius is given in solar units. The intensities are normalized
to the mean solar brightness. Blue: raw image of the Sun in plane O’.
Red: systems including the external occulter SE and SEL. Vertical line:
1.065R� radius internal occulter.
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Fig. 8. Integrated residual light L(r), as given in Eq.(15), in logarith-
mic scale, and normalized to LSL (0). Zoom in the range [0.8R�, 1.4R�].
Black: LSL . Blue: LSE . Red: LSEL .

using internal occulters of 1.01 (plot on the left) and 1.03 ex-
ternal occulter image (plot on the right). We used Lyot stops of
25mm, 24.75mm, 24.50mm, 24mm, and 23mm radius. The in-
terested reader will find in Appendix B the same study for the
original Lyot coronagraph.

As a global result, we show here that the Lyot stop mainly
acts over the residual light in the range 1.2 − 3R�, and does not
impact significantly the main diffraction feature. Reducing the
radius of the Lyot stop from 25mm to 24.75mm already gives
appreciable improvement, of about one order of magnitude. In
parallel, oversizing the internal occulter mainly contributes to
reducing the level of residual sunlight around the edge of the
external occulter image. The decrease is not linear, and we can
roughly estimate an improvement of two orders of magnitude
from 1.005 to 1.02 external occulter image radius. The rising
question is then to deal with vignetting, which controls the spa-
tial resolution in the inner part of the solar corona. Yet, we did
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mean solar brightness. Blue: system SL. Red: system SEL. Vertical line:
24.75mm radius Lyot stop.
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Fig. 10. Final response as observed intensities in the focal plane in a
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tensities are normalized to the mean solar brightness. Black: system SØ
given by IB(r) in plane B. Blue: system SL given by ID(r) in plane D.
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not look at detailed vignetting functions in our present work. Fi-
nally, we want to emphasize that the residual light in the range
1.5 − 3.2R� is more impacted by the size of the Lyot stop than
the internal occulter.
de Lyot It is of course the combined effect of the internal oc-
culter and the Lyot stop that makes the performance of the coro-
nagraph. Figure 13 illustrates this point by plotting the residual
scattered sunlight level observed at 1.3R�, as function of the ra-
dius of the internal occulter and of the Lyot stop the Lyot stop.
The region 1.3R� has been arbitrarily chosen. At least, it seems
that such a coronagraphic system theoretically manages to reject
below 10−8B� using a 1.065R� internal occulter, which is 1.05
times the external occulter image. Even more, a performance of
10−10B� at 1.3R� looks feasible at the price of increasing the in-
ner vignetting of the instrument. So, combining this assessment
with a fine analysis of the vignetting function of the instrument

will allow a complete theoretical performance study of the reso-
lution of the coronagraphic system.

5. Conclusions

We presented a dedicated numerical analysis to compute the
theoretical performance of different solar coronagraphic sys-
tems. Starting with Fresnel diffraction induced by the external
occulting disc, we investigated the propagation of the wave front
inside the Lyot coronagraph. We compared the external solar
coronagraph, the original Lyot coronagraph with a Lyot mask
alone and the hybrid externally occulted Lyot solar coronagraph,
using the geometrical parameters of ASPIICS. With a Lyot
mask of 1.065R� radius and a Lyot stop of 24.75mm radius,
the original Lyot coronagraph rejects below 10−6B� around
1.5R�, but the residual diffracted sunlight remains brighter than
10−8B� outside 1.5R�. The external coronagraph alone manages
to gain one order of magnitude, while the hybrid cornagraphic
system achieves a stray light rejection below 10−8B� outside
1.5R�, using the same configuration. The performance for such
a cornagraph looks more efficient compared to the classic Lyot
coronagraph, thanks to the external occultation.
We refined our study to exhibit the coupled effects of sizing both
internal occulter and Lyot stop. Oversizing the mask enables
to decrease the intensity of the diffraction fringe located at the
image of the external occulter, while reducing the radius of the
stop allows to globally reduce the residual light outside this
peak. As a concrete result, we provided in figure 13 a graph
that allows simply estimating the performance, given at 1.3R�,
as a function of sizes of the internal occulter and Lyot stop.
We showed that it is feasible to reject below 10−8B� using an
internal occulter whose radius is smaller than 1.07R�. However,
achieving a rejection below 10−10B� is very demanding in over
occultation. This last analysis shall be coupled to a fine study of
the vignetting function of the instrument. However, we would
like to emphasize that our results remain purely theoretical,
since our computation is based on the assumptions of perfect
optics and alignment. The introduction of other sources of
scattering, such as ghost, bulk scatter or wave front errors of the
optics, may degrade the present performance.

If the predominant diffraction features remains troublesome,
one can investigate in the nature of the external occulting disc
itself. Apodization techniques applied to external occulters have
already been analytically proved by Aime (2013) to be more
efficient than the simple sharp-edged disc we considered here.
What naturally follows this work consists in the study of more
complex type of occulters and related analytic performance.
Numerical optimization can be also further investigated, as it
has already been done for exoplanet coronagraphy, like the
work of Flamary (2014). The main difficulty yet stands in the
two dimensional representation of such complex shapes and
computing the analytic expression of Fresnel diffraction.

It would be interested to confront our analysis to experi-
mental studies of stray light rejection. The approach described
by Venêt et al. (2010) or the dedicated measurements and
optimization of ocuclting disc presented by Landini et al.
(2010) shall provide quantitative data about relative gains of
different types of occulters to be coupled with the theoretical
analysis of performance for the hybrid externally occulted Lyot
coronagraph.
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Fig. 11. Radial cuts ID(r) for internal occulters of 1.005, 1.01, 1.02, 1.03 and 1.04 external occulter image, in logarithmic scale. Left: fixed Lyot
stop of 24.75mm radius. Right: fixed Lyot stop of 24mm radius. The transverse radius is given in solar units, in the range [0.5R�, 2R�]. The
intensities are normalized to the mean solar brightness.
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Fig. 12. Radial cuts ID(r) for Lyot stops of 25mm, 24.75mm, 24.50mm, 24mm and 23mm radius, in logarithmic scale. Left: fixed internal occulter
of 1.01 external occulter image. Right: fixed internal occulter of 1.03 external occulter image. The transverse radius is given in solar units. The
intensities are normalized to the mean solar brightness.
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Fig. 13. Residual scattered sunlight level at 1.3R� for system SEL, in
logarithmic scale. The horizontal axis represents the radius of the inter-
nal occulter set in O’, in R� units. The vertical axis represents the radius
of the Lyot stop set in plane C, in mm.
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Fig. A.1. Intensity IA(r) on plane A in a logarithmic scale. The inten-
sity is normalized to the mean solar brightness. From top to bottom:
z0 = 1m, 10m, 50m, 100m, 144.348m and 200m. The red curve corre-
sponding to ASPIICS nominal geometry. The curves are normalized to
the mean solar brightness B�.

Appendix A: Study of the penumbra cone by
varying the distance z0

The shape of the umbra cone is intimately linked to the distance
z between the external occulter and the aperture of the telescope.
In the context of Proba-3 Formation Flying mission, this has a
particular interest, since the inter spacecraft distance between the
Coronagraph and the Occulter may vary. We computed the Fres-
nel diffraction pattern Eq.(5) and the penumbra profile in plane
A IA(r) given by Eq.(12) for different values of z0, keeping the
same parameters for the external occulter, the Sun and the wave-
length.

In Fig.A.1 we give the radial penumbra profile of diffracted
light in logarithmic scale at z0 = 1m, 10m, 50m, 100m,
144.348m and 200m. Before all, we must advertise that Fres-
nel diffraction theory may not be fully justified at small z0 as the
approximation of small angles is no more valid. The smaller z0,
the smaller the stenope image of the Sun in plane O, computed
as z0 tan R�, as given in Table A.1. So, at z0 ≤ 50m, the radial
penumbra profile shows a bell-shape in the central region, due
to the two dimension convolution of this stenope image with the
Arago bright spot in plane A. At larger z0, this feature vanishes
and we obtain a smooth penumbra profile. We notice that the
umbra is about 2, 5 darker at z0 = 100m than 144.348m, as plane
A is then closer to the occulter, with a larger radius of mm. The
geometrical umbra is reduced to a point at z0 = 152.55m, and
the so-called ante-umbra region extends behind, as the external
occulter cannot mask the whole solar disc, as illustrated by the
case z0 = 200m in Fig.A.1.

Appendix B: Reducing the Lyot stop for the original
Lyot coronagraph

We report in this appendix the study of reducing the Lyot stop
for the classic Lyot coronagraph SL. The approach is the same
as the one presented in Section 4.4. We computed the global re-
sponse in the final focal plane of the coronagraph by varying
the radius of the Lyot stop, from 25mm to 24mm, using a fixed
1.065R� Lyot mask set in plane B. We also investigated the case
without Lyot stop in plane C. Figure B.1 shows the results ID(r).

Table A.1. Relations between distance z0 between the external occulter
and plane A, stenope image radius of the Sun in plane O and geometrical
radius of the umbra. (*): the geometrical umbra does not exist since the
solar disc is no more fully masked by the occulting disc.

z0 Solar stenope image Geometrical umbra
1 m 4.65 mm 705 mm
10 m 46.5 mm 633 mm
50 m 233 mm 477 mm
100 m 465 mm 240 mm
144.348 m 672 mm 38 mm
200 m 931 mm (*)

the contribution of reducing the Lyot stop is clear, with a gain
of three orders of magnitude around 2R� in rejection of residual
diffracted sunlight.
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Appendix C: Two dimension intensities

In this appendix, we report the two dimension image of the global response related to the four different imaging systems studied.
Figure C.1 plots IB(x, y) in plane B for the raw telescope SØ and the external coronagraph SE , and ID(x, y) in plane D for the Lyot
coronagraph SL and the hybrid coronagraphic system SEL. A 1.065R� radius Lyot mask or internal internal and a 24.75mm radius
Lyot stop have been used for the computation. The same color logarithmic scale has been set to every plots for a purpose of direct
comparisons.
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Fig. C.1. Two dimensions observed intensities in the detection plane, i.e. plane B for systems SØ and SE and plane D for systems SL and SEL, in
logarithmic scale. The intensities are normalized to the mean solar brightness. Top left: system SØ. Top Right: system SE . Bottom left: system SL.
Bottom right: system SEL.

Article number, page 14 of 14


